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The Mallows Model
Assume we have a set of m distinct items, labelled A = {A1, . . . , Am}
and we are asked to rank these items in order of our personal preference
with respect to some attribute. This information can be expressed as a
ranking R = (R1, . . . , Rm), where each Ri ∈ {1, . . . ,m} corresponds to
the rank of an item Ai.

Figure: An example of a ranking for 6 items based on colour preference.

If we consider a probability distribution for rankings, then we can use the
Mallows model [2]. The probability of observing a ranking R is

p(R|ρ, α) = 1
Zm(α)

exp
{
− α

m
d(R,ρ)

}
,

where: ρ, the consensus ranking, is the ranking with the highest probability
of being observed; α > 0, the scale parameter, controls the variance of the
rankings around the consensus ranking; the right-invariant distance func-
tion, d(·, ·), measures the “closeness” of a permutation to the consensus
ranking; and Zm(α) is the normalisation constant, which is independent
of the consensus ranking.

Why use Sequential Monte Carlo (SMC)?
Currently, there is a hierarchical Bayesian model for the Mallows model
[3] and an associated Metropolis-Hastings-based MCMC algorithm for ob-
taining a sequence of random samples from the model. This model can be
applied to a wide range of preference data.

Our aim is to estimate the parameters of the Mallows distribution θ =
{ρ, α} sequentially as we receive new observations from the distribution.
Consider a Mallows model, denoted by π, that we are able to receive new
observations at times t = 1, 2, . . . , T . We want to estimate the sequence
of posterior distributions from M rankings at each time step t, i.e.,

πt(θ) = π(θ|R1:M) ∝ p(θ)p(R1:M |θ).

However, we would need to run the MCMC algorithm to convergence each
time we receive new observations and this can be computationally costly.
Instead, we can use SMC algorithms to approximate the sequence of target
distributions using a collection of N weighted random samples, termed
particles. At each time step, they evolve according to importance sampling
and resampling steps as we receive more observations [1]. SMC admits a
fixed computational complexity at each time step.

SMC for Mallows Algorithm
Initialise (t = 0)
• Simulate N particles from the priors p(θ).
Loop for t = 1, . . . , T (p new rankings arrive each time)
• Reweight particles from time t− 1 to t to account for the new

observations. Assuming that the observations are independent, we can
calculate the incremental weight of each particle as
π(θ|R1:M+p)
π(θ|R1:M)

= (Zm(α(i)
t−1))−M exp

− α
(i)
t−1
m
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,
where α(i)

t−1 and ρ
(i)
t−1 (i = 1, . . . , N) are the current estimated

parameter values of the Mallows model, and M is the number of
previously observed rankings. We normalise the weights.

• Resample particles (with replacement) and set the weights to 1
N .

• Move particles using a MCMC kernel to create particle diversity.

Experiment with Full Rankings
We compared the MCMC algorithm described in [3] and the SMC algorithm
by generating Mtotal = 100 rankings on m = 20 items from a Mallows
model with ρ = (1, 2, . . . , 20) and α = 2. We ran the MCMC algorithm
for 1000 iterations and discarded the first 500 iterations as burn-in. In the
SMC algorithm, we generated 500 particles using the Uniform prior for ρ
and a Exponential prior for α. Then, we let the particles evolve over time
by introducing p = 2 of our generated rankings over 50 times steps.

Figure: Heat plot of the posterior probabilities, for 20 items being ranked as the kth most preferred, for k = 1, . . . , 20. The
plots are the posterior probabilities for ρ using the MCMC algorithm (left) and the SMC algorithm (right). On the x-axis the
items are ordered according to their true ranking. The SMC heat plot gives similar posterior probabilities as the MCMC heat
plot.

Figure: Posterior density plots for α using the MCMC algorithm (left) and the SMC algorithm (right). Both plots show similar
density estimates for α.

Experiment with Partial Rankings
Here, we used the same dataset, but we only observed the top-10 ranked
items in each ranking. In the MCMC and SMC algorithms, we needed to
use data augmentation to create complete rankings before we were able to
estimate the posterior parameters.

Figure: Heat plot of the posterior probabilities, for 20 items being ranked as the kth most preferred, for k = 1, . . . , 20. The
plots are the posterior probabilities for ρ using the MCMC algorithm (left) and the SMC algorithm (right). On the x-axis the
items are ordered according to their true ranking. The SMC heat plot gives similar posterior probabilities as the MCMC heat
plot. It can be seen that there is greater uncertainty for the ranks of the least preferred items.

Figure: Posterior density plots for α using the MCMC algorithm (left) and the SMC algorithm (right). Both plots show similar
density estimates for α.

Future Work
• Extend the SMC model to the online streaming data scenario where

we receive additional information (e.g. an item rank) about an
existing partial ranking. It is likely that our augmented rankings will
be inconsistent with the new observed ranking. Hence, we need to
create an informative kernel to make these corrections based on our
current parameter estimates.

• Extend the SMC framework to clusters, where we wish to group a
collection of rankings into several groups, each with their own unique
parameter values.
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