

Induced Earthquakes: Challenges & Opportunities

Z Varty¹ J Tawn¹ S Bierman²

¹Lancaster University, UK. ²Shell Global Solutions, NL.

- The largest gas field in Europe, located in the North-East of the Netherlands.
- Gas extraction \sim 3km sub-surface is linked to earthquake activity.
- The field supplies the Netherlands, Belgium, Germany and France.
- Appliances are adapted to gas from the field, so switching is not easy.
- Earthquakes are shallow and have an impact at low magnitudes.

Aim: Use a point process approach to inform future gas extraction.

magnitude 1.5.

Figure: Location of Groningen gas field.

Challenges:

- Non-obvious how mainshock intensity $\mu(\boldsymbol{x},t)$ should utilise extraction covariates $X(\boldsymbol{x},t)$.
- Confounded effects of changing extraction and potential aftershock activity.
- Parameters in the intensity model are highly correlated.
- The usable catalogue is small and the magnitude of completion M_c is both low and variable.

Figure: Earthquake catalogue and M_c

- Work in a Bayesian framework to simplify the propagation of uncertainty into seismicity forecasts.
- Condition on the latent branching structure leading only to within-block

Figure: Multinomial-GPD magnitude model.

parameter dependence.(G. Ross, 2016)

- The Omori and Gutenberg-Richter laws are both restricted cases of the Generalised Pareto Distribution (GPD).
- Use the orthogonal GPD in place of empirical laws during modelling and centre the productivity effect in a Poisson generalised linear model.

Figure: Density functions of $T \sim \text{GPD}(\nu = 0.5, \xi)$

					- 0.445 0.435 0.444 - 0.435 0.435 0.444 - 0.435 beta 0.430 - 0.425 - 0.4200 - 0.420 - 0.420 - 0.420 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0.4200 - 0	
	Ô			- 3.3 I I I - 3.2 3.1 3.2 3.3 - 3.1 P 3.0 - 2.8 2.9 3.0 2.8 -	-0.04	
			- 0.45 - 0.45 - 0.40 C 0.40 - 0.35 0.40 0.35 -	0.94	-0.02	
		- 0.12	-0.07	-0.06	-0.11	
	- 0.43 0.410.420.43 - 0.42 - 0.41 K 0.40 - 380.390.40 0.39 -	-0.58	0.03	0.03	0.06	
- 0.205 0.200 0.205 - 0.200 b0 0.195 - 0.190 0.195 0.190 -	0.01	-0.02	0.05	0.05	-0.09	

Figure: Posterior samples for empirical (left) and centred GPD (right) models. Proposed model reduces parameter dependence, simplifying inference and parameter interpretation.

-0.08

-0.02

Figure: Posterior distributions of aftershock lag-times. Parameter recovery is improved by using the centred GPD model (orange). Figure: Sampled posterior quantiles of aftershock delay distribution. The centred GPD model (orange) has greater effective samples size in high quantiles.

Summary

- 1. Modelling induced earthquakes presents many unique challenges. These provide exciting opportunities for future research.
- 2. Commonly used empirical earthquake laws are special cases of (or are closely related to) the generalised Pareto distribution.
- **3**. Using the GPD model in a Bayesian framework means that parameter estimation is more efficient and accurate.
- Parameter uncertainty is properly propagated to the predictive distribution.

Further work

- Performance comparison in space and time, as well as on observed catalogues.
- Combining covariate and aftershock effects on the condition intensity function.
- Investigation of magnitude dependence on covariates and triggered status.

Twitter: @zakvarty www.lancs.ac.uk/varty

